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Abstract 

The theory develqped in  an e m l i e r  paper, for a.n accurate 

reference orbi t  of an a r t i f i c i a l  satel l i te ,  is first s l ight ly  mod- 

ified, so as t o  prepare the way for a treatment of zonal harmonic 

perturbations. Dehunay variables are next introduced, by means 

of certain linear combinations of the action variables, along with 

th&r canonical conjuga-bes. Application of the von Zeipelmethod 

then perroits the calculation of the most i m p o r t a t  zonal hannonic 

perturbations. These arise Awm the thlrd, with coefficient J 

and the  residual fourth, with coefficient Jk + < . The accuracy 

of the secular and short-periodic effects is tbrough terms of order  

52 and that of the bng-periaiic effects is through terms of oMer 2 

J2. 
takes care of all but 0.5 percent of the deviation of the earth's 

gravitational f ie ld  from spherical symmetry, the over-aU secular 

accuracy izz3 second d e r f i  The resdLts ere c m -  

pared with those of Kozai. 

3 '  

Since the reference orbit i t se l f ,  withexact s e c u l a r t e r n ,  

JoPpassPs  f h a f  of j k o t x * +  

A 
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1. The Reference Orbit 

The author (Vinti 1959,b) has introduced a potential 

that can represent accurately the gravitational f ie ld  of an 

oblate planet. Here ,U is  the product of the gravitational 

constant G and the planet's mags, c is an adjustable length, and 

p and 77 are oblate spheroidal coordinates, defined by the equa- 

tiom 

h 
(1.01) 
- 

2 2  x + i y  = r c o s g a i +  = [(p + c )(I -q2)12 ea i+  

m (1.02) Z =  rsing = 

If an e i f i c i a l  s a t e l l i t e  is at the f ie ld  point, r, 6, and 4 

are respectively its plasetocentric distance,decU.nation,and right 

ascension, and X, Y, and Z are i t s  rectangular caordiaates, OZ 

being dong  the planet's axis a d  OX pointing towa;rd its vernal 

eqyinox. 

If re is the equatorial radius, the true potential I s  

V = -pr-'[l - (rJr)n J I? (sine)] + tesseral hrarmonics , (1.03) n n  n=2 

-_ 
." . 
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where only the products rz Jn need t o  be known. That is, 

differences in the definition of re , when non-circularity of 

the equator is taken into account, can be reconciled by smaU 

adjustments of the J’s, Then if 

c = < J $  (1.04) 

V’ 

harmonic and also gives higher even harmonics, characterized by 

regresents exactly the zeroth harmonic -p/r and the second 

Ja = (-1)”+l $ 

In particular it gives J4 + 4 = 0, as conrpared with observed 

values f o r  the earth ranging r”r0m -(0.s)10-6 t o  (0.4)10-6 

@aula 1962, King-&le, Cook, and Bees 1963). Consequently it 

accounts f o r  about 99.5$ 

-p/r corresponding t o  spherical symmetry. 

campletely for the flattening of the earth, leading t o  a geoid 

that never departs by more tha.n/30 meters from the true sea-level 

of the deviation of V from the value 

It thus accounts a b s f  

about 

surface . 
For the drag-free motion of an ar t i9 ic ia l  s a t e l l i t e  the 

potential  (1.00) leads t o  a separable problem, which has been 

worked out anslytically ( V i n t i  1961 a,b, 1962). 

holding f o r  all angles of inclination and containing no c r i t i ca l  

This solution, 
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inclination or long-periodic terms, gives secular terms exactly 

by means of rapidly converging infinite series and short-periodic 

t e r n  correctly through order 4 . We call this orbit correspond- 

ing t o  (1.00) the reference orbit. For such a reference orbit 

error can never accumulate, because of the exactness of the se&:- 

terms, and the periodic terms can be in  error only by amounts of 

the order J2 3 , Le., by about 1 part in 10 9 , since J2 = (1.08)10-3 

for the earth. 

2, Zonal Harmonic Perturbations 

For a sa t e l l i t e  of the earth, if i t q  o rb i t  is high enough 

so that drag is small and low enough so thak the moon's effect is 

sma71, the above reference o r b i t  ought t o  hold rather w e l l  fo r  a 

good many revolutions. 

numerical camparisons are sti l l  incoqlete.) 

the actual orbit w i l l  deviate more and more f'rom such a reference 

orbit, because o f t h e  neglected forces. 

(I purposely choose vagw words here, since 

Eventually, however, 

These include forces aris- 

ing from drag, meteoritic L ~ a c t ,  rzdistion, slzctromag;2tic fields, 

the sun eJld the moon, and the neglected part  of the earth's grav- 

i t a t i o s a l  potential, correspoqding t o  (1.03) minus (1.00) . Since 

the eqansion of (1.00) i n  zonal  harmonica is 
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t h i s  difference is 

Of these forces the most important, for any sa t e l l i t e  with a large 

ra t io  of mass to area, are the forces correspondizg t o  J 

J4 + 4 
include effects of meteoritic impact. For a double sa t e l l i t e  (Ianger 

and Vinti 1963) only (2.01) and the lunar-solar perturbation remain. 

The purpose of the present paper i s  t o  devise a method f o r  

and 3 
i n  (2.01) and drag, which as determined empirica3ly m y  

correcting f o r  the effects of any of the Zonal harmonics i n  (2.01). 

The first example considered is the r e s i h d  fourth harmonic, with 

- 
coefficient Jjj + . This harnonic leads not only t o  short-periodic 

effects and secular effects, but also t o  long-periodic effects depend- 

b g  on a resoa8sce denominator 1-5 cos 2 I, giving r i s e  t o  a c r i t i ca l  

inclination I = 63.4'. 

harmonic, with coefficient J !Phis gives r i se  00 t o  short-periodic 

effects and t o  long-periodic effecks without s-ties, so that 

it is quaUtatively l e s s  interesting. Because of i t s  grea-hr mag- 

nitu.de, however, J being about (-2.k)lO- 6 and I J4 + $1 being 
3 

The second example consideSed is the third 

3' 



- 6 -  

probably somewhat less  than (Q.s)10-6 (KE k? 

Our problem is thus t o  find the motion of a sa te l l i t e ,  taken 

3. The Dynarm ‘ c d  Problem 

t o  be of unit mass, when the Haniltonian is 

where T i s  its kinetic energy and where, for  the residual fourth 

harmonic 

q+ E J 4 + 4  (3.03) 

( We have here reversed the sign of the H&miltonian, to agree 

with the  usual practice with Delaunay variables.) I n  wxrying 

out t h i s  solution we sb.aU use the results and notation of the 

solution ( V i n t i  1961 a,b, 1962) for  the reference orbit, fo r  

which 2’ = 0. If in (3.02) we then put 

r = a ( 1 -  ecos E) = a(1 - e 2 )(I + ecos v) -1 (3.04) 



Note that (3.04) corresponds t o  r = p and (3.05) t o  other 

approxbations of zeroth order i n  J2, viz., 

Such an order of accuracy w i l l  result i n  errors of order 9 for 
those secular and short-periodic effects which are produced by the 

perturbing po ten t id  (3.02) and of order 4 for the correspond- 

ing long-periodic effects. 

0,l $ of the deparhme of the earth from sphericity. 

This perturbation (3.02) repzksents about 

The solution 

f o r  the other hasmanics in(2.01) w i l l  have the same accuracy. How- 

eyer, since all-of these higher harmonics 'represent only about 0.s 

of the  earth's departure from sphericity, t h e i r  lower accuracy, as 

compared with tha t  of the reference orbit which has. 

f o r  99.5 $ of this departure, should not result in serious cumula- 

t i ve  errors. 

accc-mted 
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In doing the perturbation theory, the first car~-cxical 

.-.-A v a . r ~ ~ ~ ~ ~  -7-q 

the a ' s  and . p ' s  of the reference orbit. 

o rb i t  is el l ipt ic ,  however, their  shortcomings are w e l l  known 

and they lead t o  the same troubles in the present problem, 

giving rise t o  'Poisson terms, linear i n  the time, i n  the changes 

Chat cone t o  mind are the Jacobi "constmts'', viz., 

When the reference 

in q = d %  

The next set of canonical, vaziables that one might try is  

the set geneAted from the a ' s  and B ' s  by the generating f'unc- 

t ion  

If we define no by 4 

2 3  
0 0  

p = n  a 

the resulting canonical variables are 

1 
L = (Po)Z  

canonical with respect t o  the Hamiltonia 
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When the reference orbit i s  ellip,ic, this se t  is 

t kc  fzst Zeiaunay set (Garfinkel 1960) . 
ae s m e  as 

h e  may then a t t eq t  t o  apply the von Zeipelmethod i n  the 
d m d  b$  G & ~ ~ # < B I  09SQ1,  

way successfully used by Brortwer (1959)h f i r s t  eliminating short- 

periodic t e r n  and then proceeding t o  eliminate long-periodic 

teras. 

Function Sf , which ought t o ' be  of the flrst order i n  the param- 

e te r  (&= J4 + , must then satisfy 

One finds, however, that the comesponding generating 

One may alternatively eliminate short-periodic and long- 

periodic t e r n  simultaneously, but one then obtains a Poisson 

term of the  form v'sin 2'8; in % - 01;. 
part, such a result would appear absur<, 'sime the "constaTlt" + , 
which ought t o  have only a small periodic variation, would then 

Since v' has a secular 

increase indefinitely with time, 

These diff icul t ies  are exanples of the failure of the von 

Zeipel method whenever the following conditions both hold: 

the perturbing potential has a long-periodic par t  of the First 

(1) 

order in  the perturbation parameter, and (2) the canonical v8s'r- 

ables are such that the unperturbed W l t o n i a n  depends only on I;. 
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To obtain a successfd se t  cf vsrisbles, we may proceed as 

foUows. Let qy and poi, i = 1,2,3, be the coordinates and momenta 

p, nJ corresponding t o  the unperturbed problem (the 

reference orbit), with M t o n i a n  

i = l,2,3, be the corresponding ad ion  and angle variables. 

Then 

p , p , 'p P r l 9  0 0 

F ='Po . Also-let  ji , wi 

0 . e  
J;' jy J3 

+ + J  

(3.15) Py = as(q:> G J  q Z j J f l > $ g J  0 - 0  &)/a< 

where S is the IEamilton-Jacobi function of the unperturbed problem 

(Vinti 1959), with the Jacobi a ' s  replaced by the j y  . Here 

I 
(3.17) 

NOW l e t  Si, pi, i = 1,2,3, be the coordinates and momenta CorrespondFng 

to the perturbea problen, with Haniltonian F = Fo f F1 . Introduce 

new variables j,, wi, i = 1,2,3, by means of the canonical trans- 

(3.18) 

(i=1,2,3) (3.19) 



I 
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where S is  the same function of the 

&milton-Jacob1 fimsti~c is rf’ tiie < an& J n i b  Thenthewiand 

and 5, that the abwe 

are canonical variables, satisfying the equations Ji - 

They are thus nut action and angle variables: since the ji 

constant and the wi are not linear f’unctions of t. Moreayer 

are not 

i n  contradistinction with (3.17). 

It pays to go further, however, sad introduce still another 

set of variables, a new DelsLunay set L, G, H, 4, g, h, by the 

2 n H =  j3 

where s gnoij = f 1 respectively f o r  a direct orbi t  o r  a re$rogm.de 

orbit. To verify that they are canonical, note that 

I 



, 
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They were 

theory t o  the problem of the c r i t i ca l  inclination. 

now have 

by Izsak (1962) tn his application af the author’s 

From (3.23) we 
I 

4. &e New Debunay Set 

The Aznctional relations among asy of the quantities ai, ji, 

wi f o r  the perturbed problem are the sane as those connecting 4 , 
j;, w; for the unperturbed problem. We may therefore usually drop 

sugerscript zeros and depend on the context for the meanings of the 

q w t i t i e s .  

From the author’s paper (Vinti 1959 b) we n w  find 

3x 

0 ‘  

j3 = 27r tL$ 

I 

(4.01) 

(4.02) 

i i 
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Then, since 

we f ind  

= t + 6% = j, w1 + j2, w2 
a% 

(4.06) 

(4.07) 

(4.08) 



, 

J S COYM-N BS-DC 

- 14 - 

The quantities jrs occurring here are given e q l l c i t l y  as f'unc- 

t ions of the a ' s  i n  Eqs . (7.16) tho-agh (7.U) of an ear l ie r  

paper (Vinti 1961 a) 

The constant orbi ta l  elements in the perturbed problem are 

then the constant parts arc, e", qi of a,.,% , along with the 

in i t ia l  values A i ,  gi, h;; 
correspond.ing Hamiltonian F i s  given by 

of the secular parts of A, g, h. The 

I 

' F = FO(L,G,H) + F1 (4.13) Fo = 5 , (4.14) 

so that 

Wi+h the use of (3 .23) ,  (3.261, and (4.04), we find for the 

unperturbed problem that 
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and thus for the unpe'durbed problem tbt 

(4.18) 

where we have dropped the double primes from Ao, go, 

Before finding the effects of the perturbing potential, it 

is desirable t o  change the algorithm for the unperturbed problem, 

given i n  an ear l ie r  paper ( V i n t i  1961 a, pp 197-200), so that the 

constant orbi ta l  elements become a,e,I, A,, go, and p3 (g, is 

be t te r  than %, as we shall see later.) 

(b.ll), and (4.18) into Eqs. (8.2) and (8.3) of that paper and 

ca,rry out the same process that was carried out there. 

To do so, inser t  (4.10), 

One finds 

Ms = A. + 27r vlt 

= A, + go + 2n v2t 
@S 

(4.19) 

(4.20) 

With these new deflpitions of Ms and #s the &.l.gorithm then becomes 

the s q  as in the eazlier paper. Note, however, that the restric- 

t ion  on the a q l e  of' inclination I has been removed (Vinti 1962). 
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5. Variations i n  the Spheroidal Coordinates 

It is  convenient t.0 derive here the variations i n  p, n, 

and 4 that will ar ise  f r o m  tde variations produced by the 

perturbing potential in the Delaunay variables. 

solution of the, canonical equations (4.15) and (4.16) we shall 

From the l a t e r  

find tht the mth Zonal harmonic produces variations i n  the 

Delaunay variables of the forms 
I 

6 L = om Lm 

g H = O  
I 

-1 - 
6 h = Dm % + Om J2 hm 

I 

Here 0 = J and U4 = J4 + e. The tel-ras 0 L a d  OmGm are 3 3  m m  
short-periodic of order 4 ; the products of Urn Ji” with cmy 
la, ~ m t  and ha are long-periodic of order J2. 

products of (T with A3, g3, and h3 are short-periodic of order 5’2 . 3 
For m = 4 

- I y  Y 

For m = 3 the 

&4 = a41 + ’42 

€34 = Q41 + 

h4 h41 + h42 
9448 4 y s  

where the products of o4 with .ek,, and are short-periodic 

ana 42’ @;42) terns of o d e r  4 and where the prcducts of cY4 with A 
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are secular terms of order 

From (jL and 6G we can find the variations of the j ’ s ,  then of 

3 . 
’42 

the a’ s, and finally of the elements a, e, and % 
these and from @, 6g> and (3 we can then find and 

LX and f m  t’ae coordinate vari,z;i;iGns E p ,  6q3 6 +  . TO 

obtain the 6JVs, use (3.26) and (5.00). The results are 

sinI. From 

6E, 6v, 6$, 

To find the 6a’s use 

(5.03) 

Within the accuracy of the cdcL&%ion, the coefficients 
0 

J2 . axe needed only througn order Thus by (5.03), (5.04), 

and (4.04) 

Also, by (4.02) and (5.03) 

? = O  



To find a 21 and $ note that; 

a 21 j,, + a22 j, = 1 

3, + % 3, = 0 9 

with the solutioa 

where 

( 5 -09) 

From m. ear l ie r  Baser (Vinti 1961 a, p 189), it then follows 

that 
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and also that 

wnere 

Oa carrying secular and short-periodic variations on ly  through 

order 4 ana long-periodic perturbations only thr- order J ~ ,  

it then follows from (5.04) through (5.08) and (5.12) through 

(5.14) that 

6% = nGmLm (5.15) 

% = O  (5.17) 

In finaing the vesiations of other q m t i t i e s  we m y  drap 

all terms In their  defining equations of order J$ where k 2 1. - 
1- To show this, note that if P = O(JE) and 6P = OmPl”ms; P1 

& f i  

where P1 and-Pl are both of order JZ then 
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Thus if k 2 I, is a secuJ..&r plus short-periodic term 

of o d e r  k + 2 2 3 a d  2 0- d2 Pi is a lon&pe_r-dcic t e n  

of order k + 1 2 2. 

$ Cr P 
--I .-- 

This proves the statement. 
L bil 

To obtain the variations of a,e, and qo we may thus use 

the neglected terms being of order J2. There follow 

0 

A 

2 a- 

With use of (5.15), (5,16), (5.19), (5.20) asd the relstion 

%lLIIl & =  - 
an 
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periodic but no secular variations. 

To find 6E, 6v, a d  63 we first insert (4.10) and (4,U) 

into Eqs. (8.2) 2nd (8.3) of the eazlier paper ( V i n t i  1961 a) 

rejecting all &ems of order e, where k 2 1. We find 

E - esinE = A 1- O(J2)  

Eo_. (5.24) gives 

To Pind 6v , we use the anomdy ctxxzctioa 

tan-V= ( y ) ’ t a n :  1-ie ’- E , 2 l e  

fron which there lollows 

(5.27) 

2 1  = (1-e )2(1-ecosE)-i [a + (1-e2)-l s m  6e] ( 5  -28) 
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The variations of the qhero;L.dal coordinates 

p = a( l -ecos)  

q = qo sin$ 

are then 

To flnd the variation 6 9  of the r ight  ascension, we note 

that by Eq. (8.493 of the ca.rier paper (Vinti 1961 a), 

(5.34) 

where 



I 
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from page 189 of ~inti(l961 a), we find 

so t ha t  

6.B3 = 6h 

From (5.35) and (5.36) we find 

(5.39) 

Then, from (5 .34) ,  (5.39), ( 5 - b ) ,  asd (5.23), it follows that 

2 ”  wbere ire have used (1 - To>‘ sgna = ccz1 3 

It is well to note here that B is just as usefrzl en orbital 3 
element as ho . 
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6. Solution for the PeAurbed DelatLrla;y Variables 

We now have t o  solve the c a o d c a  aquR%fonls, (4.l3) t k O u y 5 f i  

(1;.~6), the perturbing potential being 

F1 = -we4 r-5 u4~4(sin~) (6.00) 

in the case of the residual fourbh harm0xI.c. To obtain secular 

a d  short-periodic variations through order 6 and lorig-periodic 

variations through order j;, it w i l l  suffice t o  use e l l i p t i c  

z2proximations in (6.00), since a4 = J4+< = O( 522) . Thus in (6-00) 

we m y  put 

sine = 7 = = rlgsin(rrt-g) (6.01) 

r = p = e(l-ecosE) = a(l-e2)(l+ecosv) -1 (6.02) 

(6.06) 



1 
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T.e part of Fl mependent of A is then 

Fron (6,02) a;nc? (6.05) it follows that 

2 3  3 2  27r 
J" (:)3dv = 2n(l-e )- (1+ 2 e ) 
0 

2?7 
J' (:)3cos4@v = 0 
0 

Eqs. (6.07) through (6.10) then result in 

(6.08) 

(6.10) 
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md the long-periodic pa& is 

The short-periodic 

* =u 

so that 

part is then given by 

(6.13) 

(6.11r) 

Fmm (3.23) and (4.00) through (4.02) we now obtain 

1 
L = p(-  25)-2 G = C $  

with neglect of terms of order J2. To the same accuracy 

Thus, with neglect of terns G f  order J2, 

a = L p  2 -1 Le2 = G?L-2 6 = 1 - I?G-2, 

(6.16) 

(6.18) 
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as expected. 

t ion with respect t o  L,G, and H, we shall have t o  use the expressions 

(6.18) t o  replace them in the results by the elements a,e, and rl, . 

When we k t e r  take derivatives of a genYenrtiq ~LXAC- 

In  solving the canonical eqmtions (4.15) and (4.16) we first 

&e a canonical transformation t o  new canonical variables L',G', 

HI, A ' ,  g' , and h', so that the new Kamiltonian F shall be inde- 

pendent of A' and h'. 

effects. 

* 

This first step w i l l  yield the shorbperiodic 

To c~l;rry it out, introduce the generating N c t i o n  

where 

and where 

yon Zeipel metho&, as applled by B r m w r  (1959) t o  sa t e l l i t e  orbits. 

S1 is to be of the f i r s t  order i n  Ob. Then follow the 

* * * 
On ql i t t ing  F into parts Fo and F1 , we then have 

along with the  following relations connecting Si and the primd 

a d  unp3.med vwables: 

(6.23) 
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Sirxe the new Fkmiltonian will not contain 4' or h', we shall have 

LI TT I = E = COnstR=f -5 L' 

(6.23) into (6.21) then gives a p a r t i e l  differential equation f o r  

= constant, Insertion of (6.22) and 

(6.24) 

Taylor expansion in the neighborhood of L',G',H,J, and g, with 

rejection of terms beyond the first order in , then gives 

The zeroth order terms lead to 

Y 
F ~ (  L' ,G' ,E) = F& L' ,GI ,E) 

ad the first order terms to 

(6.26) 

(6.27) 

writing down (6.27) we have used (6.14) to express Fl as a sum of 
* 

the terms Flc, F and Tu and we have replaced g by g' in Fl , a 
IPS 
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2 perrnissible step involving arn error of order 04. 

t e r m  independent of then yield 

Ln (6.27) the 

* 
so that  (6.26) and (6.28) together provide the new Hamiltonian F 

The remaining terns, depending on A, then yield 

a partial dLfYerential equt ion  for  S1. 

becones 

With use of (4.17) it 

Since v -v is of order J2 since Si is to be of order 2 1  

o4 J4 + J$ it follows that 27i?(v22-v1)&3,/ag will be of order J2 3 

and is thus t o  be rejected. Thus 

To evaluate the integral in (6.3), apply (6.151, (6.02), (6.041, 

a d  (6.18). Since Fu has a fzctor o4 = O(<), we cen make a 

nmiber of qproxinatians at t h i s  point and sti l l  achieve our desired 

accuracy. These a're: drop the zrimes from L' and G' 5n (6.3l)r 



express arer and qo by means of (6.18), drap the primes from L' 

and GI in Ccleulating aSl/aLr a aSl/aGr, a;nd f ina ly  use (6.18) 

again to replace L,G, and H in the final formibs by arer and v0 . 

where  @(g) is a consten-t; of integration. &re 
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With w e  of (6.18) and (6.33) we find 

4 4 4  
-P re I? H ( 9  - 90 + 105 1 - 

G G Ql - 

k 4  
-35Y re 

Q2 = (I - 2 >2 , m7 G2 a 

through terns 

To make 

of order g. 
s1 purely short-periodic, 

(6.39) 

om would have t o  choose 

@(g) i n  such a wey that 

t h a t  G{g) 'GTouIA then not vanish, but would have t o  be e. long-periodic 

2.51 J S1U w x l d  vanish. 
0 

It turns out 

term, just cancelling a long-periodi c tei-m of order P 2 arising from 

the rest o f t h e  expression fo r  SI. 

periodic effects, however, w i l l  be accurate only through order J2. 

The l a t e r  c e l c ~ t i o n  of long- 

If we arbitrarily drop ag) whose caicuhtion w o u l d  be extreaely 

laborious, the net effect will be on ly  t o  leave i n  the short-periodic 

terms of G,A,g, and h some lorig-periodic i q a i t i e s  

affecting the accuracy of the calculation. 

of order not 
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P 

The errors of the short-periodic terms will be of order J2, 3 

f o r  two reasons. First ,  the shor"-3eridic terms of the ~eferezcc 

orbit  were calculated oxiiy though -[;erms of order 6; second, the 

present calculation makes use of elliptic'approximations, so that 

a variation of the form 0 f has an error of order J2 in f and thus 

of order 

tions produced.by the perturbing potentidl w i l l .  also have errors 

of order 

equation (6.25) is of order 

4 
3 J2 i n  0&f . For this seeon& reason the secular correc- 

3 J2, even though the first omitted term i n  the von Zeipel 

4 o r  J2 . 

3. Short-Periodic Terms 

It is now straightforwsd but tedious t o  calculate the short- 

periodic terns. 

through terms of orcier $ 
From (6.22), (6.3), (6.~)~ asld (6.15), we find, 

c4 L4 - as, = L - L' =: 

a i  
where 
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.I 

where 

3 3 2  3 3e2 e 
+ (1+ )cos(W2g)+(e+ ~ ) C O S ( ~ ! +  2g)+ cos(&v+2g)+ X> cos(5v+2g)] 

f Q @e3cos( v+4g)+ $e2cos( 2v+kg)+( 2e+$3)cos( 3&g)+( I+ se2)cos( 4W-4~) 3 

Sirice the dependence of SI on H i s  only through the Q ' s ,  the calcula- 

is shp le .  F i r s t  calculate the derivztives aQi/aH. From (6.37) 

througn (6.39) and the sufficiently s c c ' z d x  relations H/G = COSI, 
2 1 1 2 / ~ ~  = 1 - To ana G~ = I-tp2 we f b d  

re 4 - =  aQ1 l5 (--) (7~:- 4)cosl: 
aH P 

aH 
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3 
fl(e,v) 3 (1+ 2 e2)(v-a)+(3e + * 3  %)sinv + e s i n 2 v  + E s i n 3  (7.08) 

3 3e2 3 
+ (5 + $2)sin( 2v+2g)+(g + %)sin( W2g)t. sin( k e g ) +  % sin( 5~+2g) 
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Fro3 (6.37) through (6.39)) with the sane approximaticas used i n  

obtaining (7.05)) we find 
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n e x t  we need the e l l i p t i c  approxbations 

To compute the 

2 -1 
sinv = (Le ) (2sin&esin2~) (7.16) 1 

1- e 
(y+:) 

aSl/aL arid $3,/aG we need finaJJy the six deriva- 



I 
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2 2 
3 af = + 3 cos(Y+4g)+ + 2 cos(m4g)+( 3e + 2$)cos(3v+4g)+(1+ 3.5\h3(4*4p;) 2 '  
av 

There then follow 

(7.9.) 
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4 +(e-- l3 21e2 20 T 13e )sin( 5v+4g)+( 2e+ $)sin( 6 ~ 4 g )  

4 3 4 

32 +( 33e2 + %)sin(7~+4g) + sin(8v+4g)+ 2- s i n ( 9 4 g )  (7.25) 

From (6.34), (7.14), and (7.16) it follows that 

and t i e n  fron (6.23), (7 .2) ,  ma ('7.23) through (7.26) that 

R - a' = D4"41 
J 

where 

(7.27) 
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2 2 4  + 15c-(L6-_1,2)sin(v-2g)-20(1~+5~ )si&@ g(8-24e e -19e )sin(~+2g) 

2 4  
-i- 240( i-e2)sin( 2~+2g)-t E( e 24+16e -5e )s in(  3+2g)+20( 17+2e2) s in(  4 ~ 2 g )  

2 + 3e ( 6k+e2) sin( 5v+2g)+50e sin( 6*2g)+5e3sin( 7 w g )  1 

4 3  2 2 
+ :q0[35e sin(v-4g)-350e si&g-l05e( 8+5e )sin(v+&g) 

4 2 - 140(8+lle2)sin(2v+4g)- $(8+20e2+7e )sin( 3vct4g)+840( 1-e )sin(4v+l.:-> 

!Ria, f'rom (7.13) m d  (7.08) though (Tolo), we find 
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frm the resi&uiL i r ' ~~ . i i h  hamonic, w i t h  ccefficient O4 E 5 4 +f 2 .  
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To fir,& the necessary canonical t ransfomt ion ,  we introduce the 

generzi ing IZrnct ion 

-R 
where S1 is t o  be of order G k .  Then 

Insertion of (8.04) wxi (8.05) i n t o  (8-61) leads t o  

(8.06) 
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L 

2 17hose Tzylor eaansion, -with r-eglect of t e r n  of order Ob o r  

higner, i s  

itjt +E% 
= Fo + Fl (8.07) 

S3lifi';ing (8.07) b t o  zeroth order and first order terns yields, 

re sse ct ively, 

(8.08) 

Rasoly-tion of (8.09) into coastsmt a - d  long-periodic terms then 

shows tht 

(8.10) 

T-'" d i ~ h  use of (4.17) a d  (6.13) and of double prirces t o  denote 

quantities cmreqozding to G", (8.11) becoazs 
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BJ Eqs. (7.34) and (7.37) of an earlier pzper (Vinti 1961 a), we have 

On inserting (8.13) into (8.12) asd replacing elements by Delaunay 

variables , we find 

(8.16) 
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( 8 3 )  

We now express the long-periodic terms in the notation of (5.00) and 

( 5  -01) 

O4 - g' -g" = - 
J2 '4 

~f we then use (8.04),(8.05),(8.14), d (8.16) t h o u g h  (8.19) and 

place G" 2 = p, Lt2= pa, H/G*'= cosl, G'"/L' 2 = I-e 2 , g' = unperturbed 

g as given by (4.18), w? find to the required accuracy 

*v 5ren 
G 4 = - 1 B  e'( I-; )-3I2n2 ,O ( I- 7cos2r) I- jcos21 1 -'cos2g 

2 

(8.20) 

(Q)2(l-e 2 ) -1 2q,(i'7cos21)(1-5cos 2 2, I) -1 sin2g 
r 

a C q = ~  a (8.21) 

(8.22) 
-&e2cos 6 I( 1-5cos2I) -2]si.n2g 

2 2 4 2 -2 c r 
tik = - (e)2e2cosI[3+16cos I(1-cos I)-l+kOcos I ( ~ - ~ c G B  I )  p i n 2 g  16 P 

(8.23) 
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9. Secular ErYects 

we obtain 

Then 

p 2  H 4 
+ 7(55-27--$ G"41 

L' 
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c Qfl ;; ,,: 7 '- I 

S k c z  SLZ- -uiipei&u&&i orbital elements a;ei ai! I, zii t k s  

the f;-equencies vl and v2, correspond t o  L', G", and H, we m y  

drop the double primes from the y ' s  in (9.00). Also, t o  our 

qec i f i ed  accuracy, we may put e2 = ~ - G I ; ~ / L ~  , ~1~ =pa.,  ax^ qo=l-Ii2/~lf 
i n  (9.02) through (9.04). 

h given by (4.18), we find 

2 2 2 

Then, with the unperturbed values A,g, a d  

a" = a + 04Ab2 g" = gt04g4* h'' = h + U4h4,, 

where 

(9.06) 
4 1 '' (-) re 4 n(1-e2)%(3 - 30cos21 + 35cos 1)t 

= I ?  ak = - 

We postpor;e s w z i w  the results for the residual fourth harmonic 

mtil  the complete algorithm i-n Szc--tiolz 23.- 

By (2.01) the contribution of the third z o d  bmcxnic t o  the 

p o t e a t i d  i s  

J P (sin$) (10 .oo) 3 3  A v  = p r3 r-4 e 
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Corresponding t o  (3.02), this iezds t o  

( 10.01) 

an3 thus t o  

(10.02) 

correspofiding t o  (6.06). 

we then f b d  

F o l l o ~ n g  the notation of Section 6, 

3 

which is  purely loW-perio$ic, so t h - k  

Since AFlc = 0, there 81% no secular efi’ects. 

The short-perioaic part of AF, is  then 
.I. 
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O n  following the sane proce(lure as in Section 6, we find 

where 

(10.08) 

-6( B e  2 )cos(v+g)-6ecos(~g)-e2cos( wg)]+qo[15e 2 2  c o s ( v + ~ ) + ~ ~ e c o s ( ~ - : ~ ~ )  

&fore t a k i n g  derivativzs of  (10.09) wi-th r e q e c t  to L' and G' 

on.3 m u s t  replace e by 1-G' /LV2, TG by 1-$/G12, and a by L12/p. 2 2 

A -- - L -L' = J3L3 
a R  

( 1 O . U )  



USCOUU-NBS-DC 

- 49 - 
where 

2 
G~ = -na 3 (1-e 2 ' % 3  )'(p) [(- 2% 3 + ;gr,)[e(v-R)cosg 1 5  3 + e sin(v-g) 

2 3 + E(14-3e 2 ) c o s ( ~ - ~ ) + $ ? c o s ( ~ ~ - ~ ) +  5 cos( 3v-g)-e(l-e )cos(v+g) 

- 3,os(2v+g) - g (34-e2)cos(3v+e)- ze 7 2  cos(kwg)-  & cos(5v+g)] 

+ 5q3[- 2 3 1 2  cos%- e cos(v-3;)- 3 6 4 - 5 ~ 2  ) c c s ( W ~ ) - ( & - e 2 ) c o s ( ~ 3 g )  

3 
2 *U 

2 3 
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2 
2 r 

3 P  
h = ( ~ s ) ~ [  ZcotI(1- sin I)[e(v-A)sing + e cos(v-g)-(1+~2)coE(v’ig) 

Continuing on to the long-periodic effects and followir-4 the 

procedures of Section 8, we f ind  

(AF,)*= o 

so t h a t  the tbizrd hemoac gives no s e c u k r  changes, &ad 

Now 

(10.2 .) 

by (10.03) arid (10.04). 

(8.13) for 25?(v:- v i  ), we find 

TJithuse of (10.18) w d  (10.19) and of 

. ,  

(10.19) 
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* 

1 =e N 

h3 = - 2 ~  ecotI  cosg 

( 10.21) 

(10.24) 

.(10.25) 

(10.26) 

(10.27) 
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11. The Complete Algorithm 

We shall summarize results by writing out the complete algorithm 

f o r  the calculation of the motion i n  the potential f ie ld  (LOO), as 

modified by the turd harmonic and the residual fpurth harmonic. T h i s  

will involve a repetition, wi th  some changes, of about two pages GI' an 

earlier'paper (Vinti 1961 a), but it is highly desireble t o  assemble' 

~ 

the whoLe solution in one place. 

Let the plFrnetary constants p ,  re, J2, J3, and J4 be given, 

along with the constant orbital  elements are,I,Ao,go, and B, . 
cdcula te  the 

To 

Unperturbed Reference Orbit 

cczrrpute 

1 
c = reJg 

D = (ap-c 2 )(ap-c 2 2  qo)+ h 2 2 2  c ri0 

A = -22.~%-~(1-?7~)(ap-c 2 2  q0) 

qo = S i n I  

bl = -2A 1 

n. 2 

z 
b2 = B2 

p = a(l-e2) 

D'= k2c2(1-n2)+ D 

-2% = p(a,+b,)-l 

2 -2 k = c p  -1 
9 = vo7?2 

, 

u 
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where Pn(x) i s  the Legendre polynamial of degree n and where 

2 R,(X) I X?~(X?), always a polynomial of degree [n/2] i n  x . 

where 

I 

where K ( q )  and E(q) are the corrplete e l l i p t i c  i n t e m l s  of the 

first and second kinds, respectively. 

the series 

It may be convenient t o  have 

+... 2 9 4  B2 = I.+ q +Qp 
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@ntinue with 

-3 4 e2 1 
%=$(Le 2 - 5  ) g -3 e(-25b2 2 + b2> 4 A@ -(1-e2)' 3 P b2 32 

A22 = 2 4  P -1 1 5 (31-b2)P 2 2 - 2  - 8 p -3 + - 3 4  b (& 2 4 - 4  +e )p 3 
3 2 2  

= (1-e 2 '  )" p - l e  -g-(-blb2 2 p -3 + b2 4 p -4 ) 
A23 

e2)4)-5 4 4 
A24 = &(I- b2e 

A = ( ~ e ' ) $ - ~  e[* blp-'( p $ )-P-~(&I; + c2)(4 + 3e2) ] 3 

, 
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where 

=.e term v, i s  then given by placing v = Ms+v +v and E = Ms+Eo+E1 0 1  A 

i n  the axmaly connectiors. meen 

+ 

where 

f A2;v1 CQS(M~+V,)+ 2A22vl cos( ms+2v0) 
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The LnLfo&sizg vsrid~l&s E, v, a d  $I are then given by 

E = 14 +E 

secular parts Ms and tbs are given exac t l y  by 

v = M +E P, and Sl, = If t is the time, the i r  s P' 

Let 

vp =vo + 

t e r n  of 

the periodic parts be s p l i t  as follows: 

vl + v2, and $ = $o + 4 + $2, where, e.g., Eo contains 

E = E +E +E p 0 1 2 '  

I! 
order 4, J2, and 9, El contaks terms of order J2 and u2 -2 , 

2 
ami contains terms of order 4 only. 

Then Eo is given by the Kepler equation 

14 S + Eo -e'sin(Ms+Eo)= Ms , 
-1 where e '=  ae(a+bl) 

v = Ms+vo and E = M +v ir, the r n m z . - ~ y  cor_.;.rctions 

< e.  The tern vo is then given by plzciag 

s o  

-1 I 
cosv = ( cosE-e) (1-ecosE) -1 sinv = (l-e2)%(l-ecosE) s b E  

o r  equivalent relations. 

the e' i n  t h e  Kepler equation.) T h n  

(Note t'mt c e here is the original - e and not 

The tern El is now gI- iven by 

El = [l-efcos(Ns+Eo)l-l b$ -$ef [l-e'c~s(Ms++E,)]-~ < sin(Ms+Eo) , 
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Unpertur;bed Xefereme Orbit 

$be spheroidal coordimtes p a9d Q are then given by 

-1 p = a(l-ecosE) = (l+ecosv) p 

and v = M +v +v +v To obtain tk s 0 1 2 .  
where 

un-m.-twbed r i i b t  ascension # , first calculate an angle 

ing 

E = bfs+E +E +E 0 1 2  

x, e q m -  

whenever I) is a mikiple  of n/2 and satisfying 

-c2c3(-2c;)-'[A 1 v + C 4 A 3 s i ~ v ]  

3 E = l  

n 

a 

Within the accuracy of cdculzrtion of the perturbations, we m y  

use ei ther  the qqroximzke or ti;e accurz-be formulas l i s ted  beiow. 

(&e of the approxiwte fom&s m y  ir,volve more work than use of 

the zcwmte o~les, became the k i t e r  :fill dzeady  be how- f r o a  the 

solution of %he un2erci;ubed pro3lem ) Compute 

Approxinz%e Fornula Acccmte Fom:& 

' -3/2 p2 a 

A. + nt M S = A0+ 2575t 
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e; 

E 

v 

M + E o  Ms+Eo+El+E2 

Ms+vo+vl+v2 

S 

Ms + vo 

Also, r = p, *%bin the accuracy of the calculation. Then compute 

, 
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Third kmoni,c LonpPeriodic Quantities 

/.. 2 =  G = 4 rena(l-e )-z eqo sing 

2 1  

3 

(1-e l2 q, cosg 
re # 

R3 = 2ae 

r 2 - e ecos I sfnI 
g3 ?P SinI e 

= - ( - -  -) cosg 

ecotIcosg N re 
h 3 = - -  ?P 
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Fourth Harmonic Short-Periodic Quantities 
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- E( 8+20e2+7e 4 )sin( 3v+&g)+840( b e 2 )  s in(  4~4g)+S4( 104+84e2-13e4) sin( 5e4g)  - 
e e 

+ iJ+o(i6+3e2) sin( 6 ~ - 4 g ) + 1 5 ~ (  88+3e2) s in(  7w&g)+35oe2sin( 8 ~ 4 g )  
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Fourth Harmonic Long-Pericdic Quantities 
2 5r n - 

'- e- e2( 1-e2)-3i2q~(1-7cos 2 I) (1-5cos 2 I) -I cos2g T c = -  4 

2 5 2 - 1  r 1 
). 5 e 2  2 - ~ 2  

= (I-@ ) 770(1-7~0s I)(l-cos I) sin2g 
b - 

c 5 r e 2  2 2 2  
g4 = - -(-) [2+ e -3(2+3e )cos I - 32P 

8( 2+5e2)cos 4 I( 1 - 5 ~ 0 ~ ~ 1 ) - ~  

- m e  2 6  cos 1(1-5cos~1)-~1s~g 

2 4 r r 
h4 = - z(p) e e2c~~1[3+16~os I( ~-~cos~I)-~+~ocos I( I-~COS~I)-~-JSW~ 

With 04= J4 + 

D e l a m y  variables 

, next coqute the variations in the 

$ L = J L  + O L ,  
3 3  4 4 

d H = O  

J3 O4 ~ G = J G  +---++aG + -  3 3  J2 3 4 4  J2 4 

dA = J R + 2 J ,  A + +a4(Ab1 + R42) + - O4 ; 
3 3  J* 3 J2 



- 63 - 

The variations of the elements a,e, and To are then 

The variations i n  the uniformisjng variables E, v, and Sr, axe 

’ &‘ 
The vaziations i n  the spherf;r8al cooldlr;ates p, 7, and 9 
then 

are 

, 
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ti s c c :: L! - H F s- D c 

are then given by 

12. Discussion of Results 

CAOSCrn 
Since the %-accuracy of the qpantities appeazing i n  

the present perturbation *.bay is only that of an e l l i p t i c  approxima- 

t ion,  the variations in the Delaunay vzriables may be 8qw-d those 

f s u d  by Brouwer (1959) or by Kozai (1962) . 
results with those of Bromer shows that  the long-periodic effects 

of the third and fourth hazmonics and the seculer effects of the fourth 

egree with Brouver' sA provided that one replaces kz& J4 by J, +j! 
Coqarison w i t h  Kozai shows that the shol--l-periodic effects agree with 

his. 

W I  -/A f&b Cf LsPcf!!> 4; 

&yf,ncyz~ 09594 

' A  0,  Of & > p - t L /  

>A chac/r& . G U ~  

Conparison of the above 

A 

&, (;a .;C,;?di */ ) > , #heir 

-t 2' 

(1) 
Similarly one can read out of Kozai 's p p e r  the long-periodic effects 

of J J and J a d  the long-periodic and secular effects of J6 and 5' 7' 9 

a d  MS J8 by J +J4 but this W o u l d  be going beyond the tLCCuracy of 8 2  
the present calculation. Since the author's orbital  elements d i f f e r  

120a X3zai's by t e r n  of order J2, tbe agreenent wikh Kozai holds 

o d y  through terms of order J2 f o r  long-pericdfc effects and 

through teras of o d e r  $ for short-periodic effects. 

I - .  . , . , _  , .  ,,, . . _ _ .  , _  _.. . . . . .  , . . . . . .  ... ._..  

i. On his page 451, hovever in the first l ine for AG, the 
emress;on COS& should de C G S ~ .  
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To compare accuracies, we construct the following table, noting 

t h a t  t'ne author's reference orbit accounts f o r  about 99.5$ of tile 

deviction of the earth 's  potential fro= spherical symmetry. 

perturbation is  only about O.5$ of Kozai' sa-pe-. 

Thus my 
T &  A* fin/ 

A 

- Effects of 99.5% of Deviation from Sphericity 

Secular Accuracy Short-Periodic Long-Periodic Accurncy 
Accuracy 

Kozai 

Author 

Kozai 

Author 

Through J2 3 Through J'2 Terms do not exist  

Exact Terms do not exist  

Effects of Penmining 0.5% of Deviation from Spherity 
Secular Accuracy Short-Periodic Long-Periodic Accuracy 

Through 4 P-ccuracy 

'I"nr0Ugh J'2 Through < Through J2 

Thus the advantqes of the autkor's treztnent are %'re exact 

solution for the secular effects ar5sb.g from 99.5% of the asgherica3 

deviation and the much shorter a l g o r i t b .  The princiSa2. advantage of 

K m e i ' s  treatment, arising i n  connection with the remaining 6.5s of 

the as&erical. deviation, is his more accurate solution f o r  the long- 

p e r i d i c  terms. 
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The present solution, like a l l  previous perturbation theories, 
2 

mese terms are thus n& reliable if one considers 

g'lres rise t o  the resonance denominator l-5cos I i n  some of the 

lo-zipperiodic t e r n .  

inc'l-rr?ati.ons I sufficiently close t o  63.4' o r  116.6'. 

ations one could irriprove the accuracy by boldly &-ping the long- 

periodic tern with coefficient J4+4 or, better, by sul;eqosir,; oc 

tL2e preser,t t r s a tmnt  Izsdk's(lg62) solution of the problem of the 

For such inclin- 

imlinat ion. 
r c 

element e OCCUTS i n  the denominators of be, A , g R , '$' 

g41 and thus a lso  ir tkte denodmtors of S A ,  $g, $E, $v, 
3 3 3 3  

No corresponding trouble occms i n  the coordimies, however. - -I 
T o  tes t  this p o i n t ,  rzject  aU. t e r n  except those containing e . 0 n ~  

- c .  
G = G 4  = 0. Then $e = O(eo), gE = $v = 6R, and g$ = l v  t &g 

P = L A  + 06 = 0. Trouble .could occur i . ~  ,I; or i n  l$ only through 

3 

(+, so tbt J ' p )  and l+ ao not becow LMinite f o r  e=O. similarly, 

trouble could GCCW i n  $ p  through the tern -acosE $e, which, howeyer, 
r 

does not 

d E  = c d  

The 

become in f in i t e ,  o r  throu& the tern aeair!  dE. 

= O ( e - l > ,  so that this tern a lso  remins finite. 

quantity q 

But 

/+ 

sin1 o~cuns i n  the denominators of d q 0 ,  g3> h3> 
e4 
g2, m d  2 
$# . 

a d  thus also i n  the d&inc&ators of bg, $h, it), m 6  
J 3> 

Pigain, however, the coordinztes reolain f in i te  w h a  s i E I  = 0. 

-1 
To test this point, reject  ell  teras except those colliainiag ~b = CSCI. 



2 
Sknce G md G are of order lp) m d  G and G4 of order vo, it N P u  

n r  3 3 0 4 
i=oiiows that  8 / G is al~o of order nnii 6qo = ( L - ~ G )  ~ / ( : y ~ b % >  '0 --- 

==ins f in i te .  Tnus the  term sin+ $qo in $17 remains f in i te .  

I k  d s o  have g3 = -h3 = O(qo -1 >, z3 = 3 erep-'cos2RscEcosg, 

r /  

h = -$er o-lcosIcscIcosg, md $l/~ = 6g = 0(.1?,4. Thus the term 

qocosli, ,l+ i n  (77 also renains finite, so that 6~ remains f in i te .  
3 e" 

rlzlus gj6 remains f ini te .  There i s  no trouble with dp . 
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